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Due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gutzwiller’s
theory of chaotic systems. Therefore, it would be desirable that other classical invariants, not suffering from the
same problem, could be used in alternative semiclassical quantization schemes. In this Rapid Communication,
we demonstrate how a suitable dynamical analysis of chaotic quantum spectra unveils the role played, in this
respect, by classical invariant areas related to the stable and unstable manifolds of short periodic orbits.
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The correspondence between quantum and classical me-
chanics has been a topic of much interest since the beginning
of the quantum theory, and more recently in relation to quan-
tum chaos[1,2]. The question involves elucidating the clas-
sical objects and properties on which to impose quantum
restrictions, this being at the heart of every semiclassical
theory.

Very early, Ehrenfest noticed[3] the importance of clas-
sical adiabatic invariants, such as the action, in the quantiza-
tion of dynamical systems. Later, Einstein[4] realized that
the proper arena to perform this quantization for integrable
motions are invariant tori[5]. He also remarked that this
theory is not applicable to chaotic motions, due to the lack of
supporting invariant classical structures. After that, dynami-
cal invariants are regarded as the geometrical objects upon
which reasonable semiclassical theories of quantum states
should be constructed. Concerning the associated properties
to be used, those which are canonically invariant seem to be
the natural choice, since they render descriptions indepen-
dent on the coordinate system.

Keeping within this scheme, in the 1970’s Gutzwiller took
a new route, and chose periodic orbits(POs), and their indi-
vidual properties(actions, Maslov indices and stability ma-
trices), leaving aside others(corresponding manifolds), as
the quantizable invariants[6]. In this way, he developed a
semiclassical version of the quantum mechanical Green
function, which has become the cornerstone of the semiclas-
sical quantization of chaotic systems. The resulting density
of states appears as the sum of contributions of all POs of the
system, and their repetitions. The phase of each contribution
is the action(symplectic area) along the orbit(divided by"),
and the amplitude is proportional to its stability. Unfortu-
nately, this theory suffers from a serious computational prob-
lem in the exponential growth of the number of contributing
orbits with the Heisenberg time,tH=2p"rsEd, with rsEd the
energy density. This has precluded its use except in very
special situations[7]. In this respect, it is worth emphasizing
that Gutzwiller’s summation formula can be used in two op-
posite ways. In the direct route, it can be fed with classical
information to predict quantum eigenvalues. Or alternatively,
it can be used in an inverse way to extract classical magni-

tudes from the eigenvalues spectrum[8]. Curiously enough,
these two operations are not equivalent, in the following
sense. When applied in the direct way, one needs to included
longer and longer POs(with periods of the order oftH) to
predict higher energy eigenvalues. However, when applied
backwards, for example, by Fourier transforming the eigen-
values spectrum of a chaotic billiard, the periods(or other
properties) of only short POs, with values up to the magni-
tude of the Ehrenfest time,tE [9], are obtained[10]. This
asymmetry is not fully understood yet, and raises fundamen-
tal questions about our present understanding of the quantum
mechanics of chaotic systems: are long POs(with periods of
the order oftH) relevant, or is its inclusion in the theory of
Gutzwiller only a drawback? Finally, what is responsible for
the unreasonable computational effort involved in the semi-
classical computation of physical magnitudes?

In this Rapid Communication, we address this issue, by
investigating the inverse route in a non-standard way. By
explicitly including the dynamics of short POs(the only rel-
evant information in this route) in the Fourier transform pro-
cess, we develop a method, relying only on purely quantum
information, able to extract the pertinent associated informa-
tion from the actual full quantum dynamics of very chaotic
systems. We have found conclusive evidence that the corre-
sponding quantum spectrum contains information about col-
lective invariant objects associated with short POs, namely,
the homoclinic and heteroclinic areas enclosed by their
stable and unstable manifolds. This implies some sort of in-
teraction between periodic structures, that can play a role
equivalent to that of long POs in the Gutzwiller formula.

To gauge the dynamical interaction between two POs, A
and B, in a quantum sense, we propose the use of the cross-
correlation function

Cstd = ukfBuÛstdufAlu2, s1d

where Ûstd is the time propagation operator, andfA,B are
suitable functions associated with the POs, whose nature will
be discussed later. In our formula, the second part of the
bracket follows the evolution of the non-stationary function
associated with one of the POs, and the application of the bra
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extracts the information relative to the other PO contained in
it, thus filtering out(at least to some extent) the rest. By
choosing a correlation function as our indicator, we have the
same information as in the corresponding spectra, but recast
with a more dynamical perspective.

A natural choice forfA andfB are wave functions living
in the vicinity of the corresponding POs. These functions are
constructed very efficiently, either by dynamically averaging
over the short time dynamics of the associated PO[11], or by
minimizing the energy dispersion in a suitable basis of trans-
versally excited resonances[12]. In this work, we use scar
functions as defined in Ref.[12]. These functions are highly
localized in energy around some mean values satisfying a
Bohr-Sommerfeld type quantization rule

SsEd
"

− n
p

2
= 2pn, s2d

whereSsEd is the dynamical action at energyE, n the Maslov
index, andn an integer number. It should be emphasized that
all classical information required for the constructions of scar
functions of short POs can be obtained directly from pure
quantum information, as explained in Refs.[8,10].

In order to study the previous ideas, we choose a particle
of mass 1/2 enclosed in a fully chaotic desymmetrized sta-
dium billiard of radiusr =1 and area 1+p /4, with Dirichlet
conditions on the stadium boundary and Neumann conditions
on the horizontal and vertical symmetry axis[see the inset in
Fig. 1(a)]. For this system, the action takes a simple semi-
classical relation in terms of the mean wave number,k, and
the length,L, of the PO; namely,SsEd /"=kL.

In our numerical study, we consider the horizontal(A)
and V-shaped(B) POs with lengthsLA =4 and LB=2s1
+Î2d, respectively[see the inset in Fig. 1(a)]. Let fA be the
scar function for A with mean wave numberkA [obtained
from Eq. (2)], and fB the corresponding B, with the mean
wave numberkB closest tokA. We focus on the cross corre-
lation function as defined in Eq.(1), and accordingly, we
present in Fig. 1(a) Cstd for kA =155.116. The most striking
feature in the plot is the totally different behavior exhibited
by the correlation, below and above times of the order of the
Ehrenfest time,tE (the actual value of which has been
marked with an arrow in the figure). For short times, the
correlation function increases monotonically from zero up to
the first maximum. This maximum appears at approximately
twice the value oftE, the point at which interference starts to
be relevant. After that, other maxima appear, and the behav-
ior of the correlation gets very complex for times of the order
of the Heisenberg time,tH, which is equal to one in the units
system used by us.

To further characterize the interaction between POs, some
representative dynamically meaningful magnitude along the
spectra should be defined. For this purpose, we take the
maximum ofCstd in the time intervalf0,t0g,

Cmaxst0,kAd ; maxhCstd; for 0 , t , t0j,

where the dependence onkA has been explicitly included.
[For instance, in the case oft0= tH, this maximum appears
marked with an asterisk in Fig. 1(a)]. We have verified that

the conclusions are the same if we use the integral ofCstd in
the interval, as the representative magnitude; this equiva-
lence is justified below. In Fig. 1(b) we showCmaxst0,kAd, as
a function ofkA, for two values of the maximum timet0, that
have been taken equal totE/4 (lower curve) and tH (upper
curve). As can be seen, both functions decay askA increases,
while oscillating at the same time with a dominant frequency.
To analyze the frequency dependence of these functions, we
have Fourier transformed them, after the signal has been
properly prepared by eliminating the decaying tendency(dot-
ted line). We emphasize that this Fourier approach is of great
relevance for the classical-quantum correspondence analysis,
because actions manifest directly in phase space as given
symplectic areas. The resulting spectra are shown in Fig. 2(a)
in full and dashed lines, respectively. As can be seen, they
both appear dominated by only one peak, at values of the
action:S=0.227 fort0= tE/4, andS=0.828 fort0= tH. Notice
that S has units of length due to the fact that the total linear
momentum of the particle has been set equal to one. From
the discussion above, our aim is to correlate these two peaks
with invariant classical structures related to the chosen POs.
Taking into account the numerical values of their positions,
the first peak(labeled HE in the figure) can be assigned to
the heteroclinic area,SAB, enclosed by the stable and un-
stable manifolds emanating from the fixed points associated

FIG. 1. (a) Cross-correlation function between the horizontal
(A) and the V-shaped(B) periodic orbits shown in the inset, for a
value of the wave number ofkA =155.116. The timet is measured
in units of the Heisenberg time.(b) Maximum value of the cross-
correlation function in the intervalf0,t0g as a function of the wave
number, fort0= tE/4 (lower curve) and t0= tH (upper curve). The
mean decreasing tendency is indicated in dotted line.
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with POs A and B. This region is shown, shaded with hori-
zontal lines, in the phase space portrait of Fig. 3, which
illustrates the classical structures relevant to our work. When
calculated, the corresponding area is 0.22540, a value that
agrees extremely well with that numerically found forSHE.
Moreover, this heteroclinic area is related to the semiclassi-
cal Hamiltonian matrix element between scar functions
through the relation

ukfBuĤufAlu2 ~ cossSAB kd,

which is an asymptotic estimate derived in Ref.[13], based
on the knowledge of the semiclassical behavior of scar func-
tions. This expression presents the same oscillating fre-

quency found by us, and this fact can be taken as a further

confirmation of our previous assignment, sinceukfBuĤufAlu2

controls the cross-correlation function, at least in the limit of
t0→0.

Using the same kind of arguments as before, the peak on
the dashed curve of Fig. 2(a), corresponding tot0= tH, can be
assigned to the difference in length between POs A and B.
This quantity amounts to 0.828426. . ., again in excellent
agreement with the value found numerically. The existence
of this peak, which is associated with the difference in ac-
tions between orbits A and B[see Eq.(2)], reflects the strong
dependence of the interaction withkA −kB (which can also be
related with the energy separation between the resonant lev-
els corresponding tofA,B). This effect has been further con-
firmed by analyzing the oscillatory behavior of this wave
number difference, which turns out to be the same exhibited
by CmaxstH,kAd, although these two functions appear with
opposite phases.

At this point it is worth emphasizing that the different
origin of the two peaks reflects the existence of two regimes
in the cross-correlation function(1), with the corresponding
transition taking place att, tE. These two regimes can be
easily understood in terms of the Fermi golden rule, since
Cmaxst0,kAd is in fact a measure of the probability transition
between the resonant statesfA andfB. Accordingly, the be-
havior ofCmax is given by the competition between two fac-
tors: the square of the coupling matrix element and the sepa-
ration in energy of the corresponding levels.

Let us now consider other components in the spectra of
Fig. 2(a). To observe them more clearly, we calculate the
rescaled intensity that is obtained after the biggest peak has
been removed. When this is done for the two plotted curves
only the results corresponding to the dashed one are stable
against local variations oft0. They are shown in the lower
part of the figure. As can be seen, many different contribu-
tions appear, all with a comparable order of magnitude.
Among them we have focused on the highest one(labeled
HO), as the most interesting. When the value ofSHO
=0.370 is compared to the relevant classical invariants of our
problem (see Fig. 3), we find that it matches with the ho-
moclinic areas=0.377d enclosed by the stable and unstable
manifolds emanating from A; this region appears shadowed
with vertical lines in Fig. 3. The assignment is also supported
by Refs.[14,15], which has shown how homoclinic motions
can be quantized, using the corresponding invariant mani-
folds. We believe that all(or most) remaining peaks in the
spectrum presented in the lower part of Fig. 2 can be inter-
preted in the same way, using different homoclinic and het-
eroclinic regions corresponding to the same POs. Actually,
we have succeded in assigning the two peaks located to the
left of that atSHO; however, a full description of the proce-
dure is deferred to a future publication.

In summary, some aspects concerning the role of short
POs in Gutzwiller’s summation formula, the cornerstone for
the semiclassical quantization of chaotic systems, have been
analyzed. For this purpose, only purely quantum information
has been used, in order to obtain relevant classical invariants
for a semiclassical theory of quantum chaos. We have found

FIG. 2. (a) Fourier transform of the maximum cross-correlation
functions in Fig. 1(b): t0= tE/4 (full line), and t0= tH (dashed line).
(b) Rescaled intensity of the Fourier transform fort0= tH in part (a)
after the big peak has been removed.

FIG. 3. Phase space portrait in Birkhoff coordinates of the clas-
sical structures relevant to our calculations. The fixed points marked
with (A) and (B) correspond to the labeled turning points of peri-
odic orbits A and B shown in the inset to Fig. 1(a). The unstable and
stable manifolds of the horizontal PO are represented by full and
dashed line, respectively, and those for the “V”-shaped PO by the
dotted line. The shaded regions correspond to the heteroclinic(hori-
zontal lines) and homoclinic(vertical lines) referenced in the text.
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evidence that the short POs, and their associated heteroclinic
and homoclinic intersecting areas, are relevant contributions
to the spectra. Furthermore, our results provide a semiclassi-
cal interpretation on how structures localized along POs in-
teract[16]. This interaction is found to be given as the com-
petition of two effects: the energy separation between scar
functions, and the squared coupling matrix element between
them, following the celebrated Fermi golden rule. Also, we
have shown how the values of the corresponding parameters
can be theoretically evaluateda priori. Finally, our results
point out the possibility of constructing computationally trac-
table alternatives to Gutzwiller’s theory, in which the long
POs are substituted by the interaction between short POs. In

this respect, the steps given in Ref.[17] provide a suitable
frame in this direction that, together with a deeper under-
standing of the interaction between POs, can be a bridge
toward a fully satisfactory semiclassical theory of chaotic
systems based on short POs. This theory would be interesting
not only from a fundamental point of view, but also for its
application, for example, to nanotechnology[2], where it has
been recently shown useful, for example, in the study of
electron transport in mesoscopic devices[18].
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