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Due to their exponential proliferation, long periodic orbits constitute a serious drawback in Gutzwiller’s
theory of chaotic systems. Therefore, it would be desirable that other classical invariants, not suffering from the
same problem, could be used in alternative semiclassical quantization schemes. In this Rapid Communication,
we demonstrate how a suitable dynamical analysis of chaotic quantum spectra unveils the role played, in this
respect, by classical invariant areas related to the stable and unstable manifolds of short periodic orbits.
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The correspondence between quantum and classical maides from the eigenvalues spectr{igh. Curiously enough,
chanics has been a topic of much interest since the beginnirthese two operations are not equivalent, in the following
of the quantum theory, and more recently in relation to quansense. When applied in the direct way, one needs to included
tum chaog1,2]. The question involves elucidating the clas- longer and longer POgvith periods of the order ofy,) to
sical objects and properties on which to impose quantunpredict higher energy eigenvalues. However, when applied
restrictions, this being at the heart of every semiclassicabackwards, for example, by Fourier transforming the eigen-
theory. values spectrum of a chaotic billiard, the peridds other

Very early, Ehrenfest noticefB] the importance of clas- propertie$ of only short POs, with values up to the magni-
sical adiabatic invariants, such as the action, in the quantizaude of the Ehrenfest timag [9], are obtained10]. This
tion of dynamical systems. Later, Einstgii] realized that asymmetry is not fully understood yet, and raises fundamen-
the proper arena to perform this quantization for integrabléal questions about our present understanding of the quantum
motions are invariant tor[5]. He also remarked that this mechanics of chaotic systems: are long R@ish periods of
theory is not applicable to chaotic motions, due to the lack othe order ofty) relevant, or is its inclusion in the theory of
supporting invariant classical structures. After that, dynami-Gutzwiller only a drawback? Finally, what is responsible for
cal invariants are regarded as the geometrical objects updhe unreasonable computational effort involved in the semi-
which reasonable semiclassical theories of quantum statesassical computation of physical magnitudes?
should be constructed. Concerning the associated properties In this Rapid Communication, we address this issue, by
to be used, those which are canonically invariant seem to bimvestigating the inverse route in a non-standard way. By
the natural choice, since they render descriptions indeperexplicitly including the dynamics of short PQthe only rel-
dent on the coordinate system. evant information in this rouyen the Fourier transform pro-

Keeping within this scheme, in the 1970’s Gutzwiller took cess, we develop a method, relying only on purely quantum
a new route, and chose periodic orli®0s9, and their indi-  information, able to extract the pertinent associated informa-
vidual propertiegactions, Maslov indices and stability ma- tion from the actual full quantum dynamics of very chaotic
trices, leaving aside othergcorresponding manifoldsas  systems. We have found conclusive evidence that the corre-
the quantizable invariant]. In this way, he developed a sponding quantum spectrum contains information about col-
semiclassical version of the quantum mechanical Greetective invariant objects associated with short POs, namely,
function, which has become the cornerstone of the semiclashe homoclinic and heteroclinic areas enclosed by their
sical quantization of chaotic systems. The resulting densitgtable and unstable manifolds. This implies some sort of in-
of states appears as the sum of contributions of all POs of thieraction between periodic structures, that can play a role
system, and their repetitions. The phase of each contributioaquivalent to that of long POs in the Gutzwiller formula.
is the action'symplectic arepalong the orbiidivided by#), To gauge the dynamical interaction between two POs, A
and the amplitude is proportional to its stability. Unfortu- and B, in a quantum sense, we propose the use of the cross-
nately, this theory suffers from a serious computational probeorrelation function
lem in the exponential growth of the number of contributing R
orbits with the Heisenberg timé,=2a%p(E), with p(E) the C(t) = [(pg|U(1)| pa)|?, (1)
energy density. This has precluded its use except in very ~
special situation§7]. In this respect, it is worth emphasizing where U(t) is the time propagation operator, agg g are
that Gutzwiller’s summation formula can be used in two op-suitable functions associated with the POs, whose nature will
posite ways. In the direct route, it can be fed with classicabe discussed later. In our formula, the second part of the
information to predict quantum eigenvalues. Or alternativelybracket follows the evolution of the non-stationary function
it can be used in an inverse way to extract classical magniassociated with one of the POs, and the application of the bra
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extracts the information relative to the other PO contained in 0.2
it, thus filtering out(at least to some extenthe rest. By
choosing a correlation function as our indicator, we have the
same information as in the corresponding spectra, but recast
with a more dynamical perspective.

A natural choice forp, and ¢g are wave functions living
in the vicinity of the corresponding POs. These functions are
constructed very efficiently, either by dynamically averaging t
over the short time dynamics of the associated[P1], or by E
minimizing the energy dispersion in a suitable basis of trans- l
versally excited resonanc¢s?]. In this work, we use scar 0 , , !
functions as defined in Ref12]. These functions are highly 0.01 0.1 1
localized in energy around some mean values satisfying a
Bohr-Sommerfeld type quantization rule

% - V7—2T =2mn, (2)

(a)

(A)

C)

0.1

whereS(E) is the dynamical action at ener@y v the Maslov
index, andn an integer number. It should be emphasized that
all classical information required for the constructions of scar
functions of short POs can be obtained directly from pure
quantum information, as explained in Ref8,10].

In order to study the previous ideas, we choose a particle
of mass 1/2 enclosed in a fully chaotic desymmetrized sta- : .
dium billiard of radiusr=1 and area 14/4, with Dirichlet 100 200 300
conditions on the stadium boundary and Neumann conditions
OT‘ the honzontal. and vertical symmetry ajiwe th? Inset in . FIG. 1. (a) Cross-correlation function between the horizontal
Fig. 1(@)]. For this system, the action takes a simple semi-

lassical relation in t f1h k d (A) and the V-shape@B) periodic orbits shown in the inset, for a
classical relation in terms of the mean wave numkean value of the wave number &, =155.116. The time is measured
the length L, of the PO; namelyS(E)/#=KL.

. : . in units of the Heisenberg tim&b) Maximum value of the cross-

In our numerical study, we consider the horizont&)  correlation function in the intervdD ty] as a function of the wave
and V-shaped(B) POs with lengthsL,=4 and Le=2(1  number, forty=tg/4 (lower curve and to=ty (upper curvg The
+12), respectively[see the inset in Fig.(&)]. Let ¢5 be the  mean decreasing tendency is indicated in dotted line.
scar function for A with mean wave numbeky [obtained ) ] ) )
from Eq. (2)], and ¢g the corresponding B, with the mean the conclusions are the same if we use the integrél(ofin
wave numbeks closest tok,. We focus on the cross corre- the interval, as the representative magnitude; this equiva-
lation function as defined in Eql), and accordingly, we €nce is justified below. In Fig.(b) we showCr(to, ka), as
present in Fig. () C(t) for ky=155.116. The most striking & function ofky,, for two values of the maximum timtg, that

feature in the plot is the totally different behavior exhibited have been taken equal te/4 (lower curvg andt, (upper

by the correlation, below and above times of the order of th&UTV- AS can be seen, both functions decakadncreases,
: . while oscillating at the same time with a dominant frequency.
Ehrenfest time,tz (the actual value of which has been

. : . . To analyze the frequency dependence of these functions, we
marked with an arrow in the figureFor short times, the have Fourier transformed them, after the signal has been

corre_lation fgnction in(_:rease_s monotonically from zero up to roperly prepared by eliminating the decaying tendefioy-
:\%?Cgrts;gq\?axlggué?' :Ef ;;?)ﬁq)fclr;]tuvryhi%pii?é?f:rteigzrggrrt]iil ed ling. We emphasize that this Fourier approach is of grea.t
be relevant. After I?hat other maxima appear, and the behargalevance for the class_|cal—qqantum.correspondence analy3|s,
ior of the co'rrelation géts very complex for tirr;es of the order ecause actions manifest cﬁrectly in phase space as given
of the Heisenberg time,;, which is equal to one in the units §ymplect|c areas. The resulting spectra are shown in kagy. 2

H in full and dashed lines, respectively. As can be seen, they

system used by us. .
To further characterize the interaction between POs, somggignageeoarzg? E‘Raietd /Zy a?]rgyé_og gz%e%kr’t Eittva:tljsg’ Cgf the
-o=U. o=1g/4, =0. 0= -

representative dynamically meaningful magnitude along th(:t‘hatS has units of length due to the fact that the total linear
spectra should be defined. For this purpose, we take th

maximum ofC(t) in the time interval0 1] I%om_entum'of the particle has. been set equal to one. From
od the discussion above, our aim is to correlate these two peaks
Cradloka) =maxC(t); for 0<t<ty, With_ inv_ariant classical structures related to the <_:hose_n_ POs.
Taking into account the numerical values of their positions,
where the dependence d&p has been explicitly included. the first peak(labeled HE in the figunecan be assigned to
[For instance, in the case &f=ty, this maximum appears the heteroclinic areaS,g, enclosed by the stable and un-
marked with an asterisk in Fig(d)]. We have verified that stable manifolds emanating from the fixed points associated
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: ' — @ quency found by us, and this fact can be taken as a further
1 a i ) ) i . ~
o i confirmation of our previous assignment, sifG@s|H|da)|?
— i controls the cross-correlation function, at least in the limit of
t0—> 0

Using the same kind of arguments as before, the peak on

the dashed curve of Fig(&, corresponding tt,=ty, can be
T ' (b) assigned to the difference in length between POs A and B.

HO This quantity amounts to 0.828426..., again in excellent
; agreement with the value found numerically. The existence
of this peak, which is associated with the difference in ac-
tions between orbits A and Bee Eq(2)], reflects the strong
dependence of the interaction wkR—Kkg (which can also be
related with the energy separation between the resonant lev-
els corresponding tg, ). This effect has been further con-

FIG. 2. (a) Fourier transform of the maximum cross-correlation fjrmed by analyzing the oscillatory behavior of this wave
functions in Fig. 1b): ty=te/4 (full line), andto=t, (dashed ling  ,mper difference, which turns out to be the same exhibited

(b) Rescaled intensity of the Fourier transform fgety in part(a) . .
after the big peak has been removed. by Cm:a)(tH,kA), although these two functions appear with
opposite phases.

) i . . . At this point it is worth emphasizing that the different
with POs A and B. This region is shown, shaded with hori-,iqin of the two peaks reflects the existence of two regimes
zontal lines, in the phase space portrait of Fig. 3, whichy, the cross-correlation functiofl), with the corresponding
illustrates the classical strugtures relgvant to our work. Whe‘@ransition taking place at~te. These two regimes can be
calculated, the corresponding area is 0.22540, a value th@hgjy understood in terms of the Fermi golden rule, since
i/lgorreee(;svs;(t;ﬁgE;:)e/tev,\vr?)lclzl},r\?i::h;Peaa: ir;urrggtlgzll”%:) f%ljengeﬁglassicma’&to'k“ is in fact a measure of the probability transition
cal Hami]tonian matrix element between scar functionsgew-veen the resonant staiéz and¢>B._Accord|neg, the be-

. avior of C,, iS given by the competition between two fac-
through the relation tors: the square of the coupling matrix element and the sepa-
" 2 ration in energy of the corresponding levels.

(elHl da)l" > codASrg K, Let us now consider other components in the spectra of
which is an asymptotic estimate derived in REf3], based Fig. 2a). To observe them more clearly, we calculate the
on the knowledge of the semiclassical behavior of scar funcrescaled intensity that is obtained after the biggest peak has
tions. This expression presents the same oscillating frebeen removed. When this is done for the two plotted curves

only the results corresponding to the dashed one are stable

1 against local variations df,. They are shown in the lower
part of the figure. As can be seen, many different contribu-
tions appear, all with a comparable order of magnitude.
Among them we have focused on the highest dabeled
HO), as the most interesting. When the value &g
=0.370 is compared to the relevant classical invariants of our
problem(see Fig. 3, we find that it matches with the ho-
moclinic area(=0.377 enclosed by the stable and unstable
manifolds emanating from A, this region appears shadowed
with vertical lines in Fig. 3. The assignment is also supported
by Refs.[14,15, which has shown how homoclinic motions
can be quantized, using the corresponding invariant mani-
folds. We believe that aljor mos) remaining peaks in the
spectrum presented in the lower part of Fig. 2 can be inter-
preted in the same way, using different homoclinic and het-
0 1+x /2 eroclinic regions corresponding to the same POs. Actually,

q we have succeded in assigning the two peaks located to the

FIG. 3. Phase space portrait in Birkhoff coordinates of the clas/€ft Of that atSo; however, a full description of the proce-

sical structures relevant to our calculations. The fixed points marke@Ure is deferred to a future publication.

with (A) and (B) correspond to the labeled turning points of peri- [N summary, some aspects concerning the role of short
odic orbits A and B shown in the inset to Figal The unstable and POs in Gutzwiller's summation formula, the cornerstone for
stable manifolds of the horizontal PO are represented by full andhe semiclassical quantization of chaotic systems, have been
dashed line, respectively, and those for the “V"-shaped PO by th@nalyzed. For this purpose, only purely quantum information
dotted line. The shaded regions correspond to the heterodtioic ~ has been used, in order to obtain relevant classical invariants
zontal lineg and homoclinic(vertical lineg referenced in the text.  for a semiclassical theory of quantum chaos. We have found
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evidence that the short POs, and their associated heteroclinilsis respect, the steps given in RgL7] provide a suitable
and homoclinic intersecting areas, are relevant contributionfame in this direction that, together with a deeper under-
to the spectra. Furthermore, our results provide a semiclassitanding of the interaction between POs, can be a bridge
cal interpretation on how structures localized along POs intoward a fully satisfactory semiclassical theory of chaotic
teract[16]. This interaction is found to be given as the com- systems based on short POs. This theory would be interesting
petition of two effects: the energy separation between scafot only from a fundamental point of view, but also for its
functions, and the squared coupling matrix element betweegpplication, for example, to nanotechnold@y, where it has
them, following the celebrated Fermi golden rule. Also, wepgen recently shown useful, for example, in the study of
have shown how the values of the corresponding parametefseciron transport in mesoscopic deviges.

can be theoretically evaluates priori. Finally, our results

point out the possibility of constructing computationally trac-  This work was supported by MCyT and MCESpair)
table alternatives to Gutzwiller’s theory, in which the long under contracts BMF2000-437, BQU2003-8212,
POs are substituted by the interaction between short POs. IBAB2000-340, and SAB2002-22.
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